IGI researchers increase CRISPR-Cas9 efficiency

IGI Researchers have discovered a way to increase the efficiency with which CRISPR-Cas9 technology cuts and disables genes in cells.  In culture, “knockout” cell lines allow researchers to better understand the role of genetic information, and may eventually improve therapies for human genetic diseases.  

Non-homologous DNA increases gene disruption efficiency by altering DNA repair outcomes
Nature Communications | Chris Richardson, Jacob Corn, et al | August 17, 2016

Press Release
CRISPR-Cas9 breaks genes better if you disrupt DNA repair
UC Berkeley News | Robert Sanders | August 17, 2016

SUBMIT A COMMENT

Your email address will not be published. Required fields are marked *

Filters

Latest News

April 23, 2024

Welcome to Luca!

Luca Bechter received his Bachelor’s degree in Biology from ETH Zurich in 2022. He is currently enrolled in the Biological Chemistry Master’s...

April 23, 2024

Welcome to Irene!

Irene received her MSc degree in Medical Biotechnology from the University of Modena and Reggio Emilia (Italy), where she worked on the characterization...

February 15, 2024

SWISSPR 2024

SWISSPR 2024 was a great success! Hosted by the Corn, Platt, Schwank and Jinek labs, we had a blast diving into the latest CRISPR research at the beautiful Seminarhotel...

News Archive

Tweets