IGI researchers increase CRISPR-Cas9 efficiency

IGI Researchers have discovered a way to increase the efficiency with which CRISPR-Cas9 technology cuts and disables genes in cells.  In culture, “knockout” cell lines allow researchers to better understand the role of genetic information, and may eventually improve therapies for human genetic diseases.  

Non-homologous DNA increases gene disruption efficiency by altering DNA repair outcomes
Nature Communications | Chris Richardson, Jacob Corn, et al | August 17, 2016

Press Release
CRISPR-Cas9 breaks genes better if you disrupt DNA repair
UC Berkeley News | Robert Sanders | August 17, 2016

SUBMIT A COMMENT

Your email address will not be published. Required fields are marked *

Filters

Latest News

April 11, 2021

Welcome to Xiaojing

Xiaojing received her Ph.D. from Weill Cornell Graduate School of Medical Science in 2020, working with Dr. Scott Keeney on the mechanism to regulate meiotic...

April 11, 2021

Welcome to Danielle

Danielle received her Ph.D. from Brandeis University in 2021 where she worked with Dr. James Haber to characterize the mechanisms of gene editing via single...

March 29, 2021 -

Moritz awarded a PhD fellowship

Moritz was awarded a Boehringer Ingelheim Fonds (BIF) PhD Fellowship for his project to understand cell type-specific DNA repair preferences during genome...

News Archive

Tweets